Eddington Capture Sphere around luminous stars

نویسندگان

  • Adam Stahl
  • Maciek Wielgus
  • Marek Abramowicz
  • Wenfei Yu
چکیده

Test particles infalling from infinity onto a compact spherical star with a mildly super-Eddington luminosity at its surface are typically trapped on the “Eddington Capture Sphere” and do not reach the surface of the star. The presence of a sphere on which radiation pressure balances gravity for static particles was first discovered some twenty five years ago. Subsequently, it was shown to be a capture sphere for particles in radial motion, and more recently also for particles in non-radial motion, in which the Poynting-Robertson radiation drag efficiently removes the orbital angular momentum of the particles, reducing it to zero. Here we develop this idea further, showing that “levitation” on the Eddington sphere (above the stellar surface) is a state of stable equilibrium, and discuss its implications for Hoyle-Lyttleton accretion onto a luminous star. When the Eddington sphere is present, the cross-section of a compact star for actual accretion is typically less than the geometrical cross-section πR, direct infall onto the stellar surface only being possible for relativistic particles, with the required minimum particle velocity at infinity typically ∼ 1/2 the speed of light. We further show that particles on typical trajectories in the vicinity of the stellar surface will also be trapped on the Eddington Capture Sphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Escape , capture , and levitation of matter in Eddington outbursts

Context: An impulsive increase in luminosity by one half or more of the Eddington value will lead to ejection of all optically thin plasma from Keplerian orbits around the radiating star, if gravity is Newtonian and the PoyntingRobertson drag is neglected. Radiation drag may bring some particles down to the stellar surface. On the other hand, general relativistic calculations show that gravity ...

متن کامل

Giant Outbursts of Luminous Blue Variables and the Formation of the Homunculus Nebula Around η Carinae

The observed giant outbursts of Luminous Blue Variables (LBVs) may occur when these massive stars approach their Eddington limits. When this happens, they must reach a point where the centrifugal force and the radiative acceleration cancel out gravity at the equator. We call this the Ω-limit. When stars are close to the Ω-limit, strong non-spherical mass loss should occur. This suggests a scena...

متن کامل

Eta Carinae and Other Luminous Blue Variables

Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.

متن کامل

On the Role of the Wnh Phase in the Evolution of Very Massive Stars: Enabling the Lbv Instability with Feedback

We propose the new designation “WNH” for luminous Wolf-Rayet (WR) stars of the nitrogen sequence with hydrogen in their spectra. These have been commonly referred to as WNL stars (WN7h, for example), but this new shorthand avoids confusion because there are late-type WN stars without hydrogen and early-type WN stars with hydrogen. Clearly differentiating WNH stars from H-poor/Hfree WN stars is ...

متن کامل

Massive main-sequence stars evolving at the Eddington limit⋆

Context. Massive stars play a vital role in the Universe, however, their evolution even on the main-sequence is not yet well understood. Aims. Because of the steep mass-luminosity relation, massive main-sequence stars become extremely luminous. This brings their envelopes very close to the Eddington limit. We analyse stellar evolutionary models in which the Eddington limit is reached and exceed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014